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ABSTRACT: Climate change during the twenty-first century has the potential to substantially alter geographic patterns of

precipitation. However, regional precipitation changes can be very difficult to project, and in some regions, global

climate models do not even agree on the sign of the precipitation trend. Since some of this uncertainty is due to

internal variability rather than model bias, models cannot be used to narrow the possibilities to a single outcome, but

they can usefully quantify the range of plausible outcomes and identify the combination of dynamical drivers that

would be likely to produce each. This study uses a storylines approach—a type of regression-based analysis—to

identify some of the key dynamical drivers that explain the variance in twenty-first-century U.S. winter precipitation

trends across CMIP6 models under the SSP3–7.0 emissions scenario. This analysis shows that the spread in precipi-

tation trends is not primarily driven by differences in modeled climate sensitivity. Key drivers include global-mean

surface temperature, but also tropical upper-troposphere temperature, El Niño–Southern Oscillation (ENSO), the

Pacific–North America (PNA) pattern, and the east Pacific (EP) dipole (a dipole pattern in geopotential heights over

North America’s Pacific coast). Combinations of these drivers can reinforce or cancel to produce various high- or low-

impact scenarios for winter precipitation trends in various regions of the United States. For example, the most ex-

treme winter precipitation trends in the southwestern United States result from opposite trends in ENSO and EP,

whereas the wettest winter precipitation trends in the midwestern United States result from a combination of strong

global warming and a negative PNA trend.

SIGNIFICANCE STATEMENT: The newest generation of climate models (CMIP6) is now available, but despite

some improvements, models still disagree on future precipitation changes over North America. In some ways, this is to

be expected: precipitation changes (both in the real world and in the models) depend partly on climate change, but also

partly on random natural variability, so they will never be completely predictable. Thus, instead of trying to pin down

future precipitation changes to a specific outcome, we show a range of plausible outcomes that policymakers should be

prepared for. We also explore the reasons for the differences between model runs. For example, precipitation trends

on the U.S. West Coast differ between models partly because precipitation in that region is affected by El Niño events

(as well as other factors that we identify), and future changes to El Niño differ between models, even for the same

amount of warming.
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1. Introduction

Regional precipitation trends are among the more chal-

lenging processes to project in climate change scenarios. Some

broadly defined patterns, such as an increase in zonal-mean

precipitation in the deep tropics, a decrease in zonal-mean

precipitation in the subtropics, and an increase in precipitation

at high latitudes, are robust across models and are expected for

well-understood theoretical reasons (Held and Soden 2006;

Seager et al. 2010; Scheff and Frierson 2012). However, im-

pacts of future precipitation change will be felt not through

the zonal mean, but locally, and at local scales the picture

is considerably more uncertain, especially over midlatitude

land regions such as the contiguous United States (Deser

et al. 2012).

The sources of uncertainty in U.S. precipitation trends can

be decomposed into three categories: scenario uncertainty,

model uncertainty, and internal variability (e.g., Deser et al.

2012). The first two of these could in principle be reduced by

better constraints on future emissions and improvements in

climate models, respectively. For temperature projections,

reductions in scenario and model uncertainty by themselves

would be enough to substantially narrow the range of possible

trends (Hawkins and Sutton 2009). However, actually achiev-

ing this improvement is challenging in practice—the range in

equilibrium climate sensitivity in climate models has not nar-

rowed across successive generations of models (Meehl et al.

2020; Zelinka et al. 2020). On the other hand, some improve-

ments have been made in model representations of precipita-

tion (Fiedler et al. 2020).

The third category of uncertainty (internal variability) is an

even more challenging problem. Internal variability can be

defined as the effectively random variability present in the
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climate system that is not driven by external forcing. Although

it is unforced, internal variability can still produce substantial

decadal or centennial trends, and this long-term manifestation

of internal variability can be thought of as a sort of ‘‘irre-

ducible uncertainty’’ whose distribution cannot be tightened

by model improvements. The special challenge of precipitation

trends—in contrast to temperature trends, for example—is that

precipitation is especially sensitive to internal variability. This

sensitivity allows internal variability to mask forced trends in

precipitation, both for observations (Hoerling et al. 2010, 2016)

and for future projections (Deser et al. 2012; 2014). For some

U.S. regions, the forced signal in precipitation may not be dis-

tinguishable from internal variability until after 2100 (Giorgi and

Bi 2009).

Since the uncertainty in future U.S. precipitation cannot be

eliminated, we turn instead to the task of describing the range

of plausible outcomes. Internal variability in the climate sys-

tem can be represented by a large initial-condition ensemble,

in which a single model is run many times with identical forc-

ings but with very slight differences in initial conditions [see a

recent review byDeser et al. (2020)]. The ensemblemean trend

can then be taken to represent the forced response, and the

spread among ensemble members can be taken as an estimate

of the magnitude of internal variability. Similarly, multimodel

ensembles can be used to estimate the range of outcomes due

to the combination of two uncertainties: model uncertainty and

internal variability. In both cases, the projected outcome can

be represented by an ensemble mean with error bars deter-

mined by the ensemble spread.

This traditional approach is simple and intuitive, but there

are two reasons onemaywish to go beyond it. First, themethod

of identifying an ensemble mean bracketed by error bars rep-

resenting the spread implicitly assumes (or may be interpreted

as assuming) that the spread among ensemble members can be

interpreted probabilistically, an assumption that is not neces-

sarily justified (Zappa 2019). From the perspective of commu-

nication, another drawback of this method is that representing

outcomes in terms of a mean bracketed by error bars naturally

draws one’s attention to the mean. Thus, despite the best efforts

of researchers to communicate uncertainties, this presentation of

the results may actually distract attention from them.

Second, we would ideally like to know why the models dis-

agree, and which physical drivers in the climate system are

responsible for the spread in trends. This question is of scien-

tific interest, but it also may be practically important if some of

these drivers are represented more accurately in some models

than in others.

Hence, some recent work on climate impacts has moved

away from the approach described above, and instead has ex-

plicitly focused on exploring multiple outcomes in detail.

Several methods have been proposed for doing this (e.g.,

Lenderink et al. 2014; Hazeleger et al. 2015). These often in-

volve regression-based approaches. That is, the regression of

precipitation trends (for example) onto the trends in some

dynamical driver across an ensemble of model runs is com-

puted, and the regression slope is used to estimate the sensi-

tivity of precipitation to that driver (Bladé et al. 2012; Manzini

et al. 2014; van den Hurk et al. 2014a,b; Deser et al. 2017).

One particularly interesting version of a regression-based

method is the so-called storylines approach of Zappa and

Shepherd (2017) (see also Shepherd et al. 2018; Shepherd 2019;

Zappa 2019). Using CMIP5 models, these authors 1) identified

key dynamic or thermodynamic drivers linked to future pre-

cipitation and wind speed trends over Europe, 2) determined

the sensitivity of the precipitation and wind speed trends to

each process, and then 3) constructed synthetic high- and low-

impact storylines for the twenty-first century based on combi-

nations of these drivers. The key is that multiple drivers are

considered simultaneously, in order to quantify the impacts of

various combinations—the ‘‘storylines’’ of the method’s name.

The same method has since been applied to the Southern

Hemisphere midlatitudes (Mindlin et al. 2020). This method

addresses both of the problems identified above, since it dem-

onstrates the various plausible outcomes without requiring a

probabilistic interpretation, and explicitly identifies the pro-

cesses responsible for the differences between these outcomes.

In this paper, we apply a storylines approach to twenty-first-

century precipitation trends for the United States using output

from the global climate models that participated in phase 6 of the

Coupled Model Intercomparison Project (CMIP6; Eyring et al.

2016), keeping in mind that the key dynamic and thermodynamic

drivers relevant for local precipitation over the United States are

likely different from those forEurope (Zappa and Shepherd 2017)

and the Southern Hemisphere midlatitudes (Mindlin et al. 2020).

Specifically, we seek to answer three questions with our analyses:

1) Which drivers are responsible for the differences in U.S. pre-

cipitation trends across CMIP6 models and across ensemble

members of individual CMIP6 models? 2) What are the wettest

and driest plausible storylines that these drivers could combine to

produce for each region? 3) What are the relative roles of model

uncertainty and internal variability in these precipitation trends?

2. Data and methods

We use monthly mean output from CMIP6 models, using the

SSP3–7.0 emissions scenario. This emissions scenario is driven by

projected forcings over the period 2015–2100 such that the global

average radiative forcing is 7.0Wm22 in the year 2100. We

choose this emissions scenario because it was requested to have

the largest number of model ensemble members of all the

CMIP6 twenty-first-century scenarios (O’Neill et al. 2016).

At the time of download, 185 ensemble members from 34

models were available for the CMIP6 SSP3–7.0 scenario. A few

ensemblemembers have only 40 or 41 years of data, instead of the

full 86 years (2015–2100).We exclude these, leaving a total of 176

ensemble members from 32 separate models (see Table S1 in the

online supplementalmaterial for a list of themodels used). In this

paper, we consider only the December–February (DJF) season,

and we remove the seasonal cycle by subtracting the mean over

all December data from each December, and similarly for

other months.

To compare the CMIP6 models results with observations, we

also use reanalysis data from the European Centre for Medium-

Range Weather Forecasts (ERA5; Hersbach et al. 2019, 2020).

Specifically, we use the monthly mean 500-hPa geopotential

height, 20-hPa zonal wind, sea surface temperature, and air
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temperature through the depth of the atmosphere for the period

1979–2020. For the air temperature data, we select only those

pressure levels that are also available in CMIP6, for consistency.

We consider modeled precipitation averaged over each of 10

regions of the United States: Alaska (AK), Hawaii (HI), the

Northwest (NW), the Southwest (SW), theNorthern Plains (NP),

the Southern Plains (SP), the Midwest (MW), the Northeast

(NE), the Southeast (SE), and the Caribbean (CB). These cor-

respond to the National Climate Assessment (NCA; USGCRP

2018) regions, as shown in Fig. S1 in the online supplemental

material. The slight differences between our regions and the

original NCA regions are that 1) due to limits of resolution, some

small islands are excluded, and 2) for Hawaii and for the

Caribbean (i.e., Puerto Rico and the Virgin Islands) we use

polygons drawn around themajor islands instead of attempting to

follow the actual shapes of the individual islands.

At various points in the paper, we consider the component of

the twenty-first-century trend in some field y that is uncorre-

lated with the concurrent trend in global-mean surface tem-

perature (TAS). For example, suppose we are considering the

2015–2100 trend in y for each ensemble member n, denoted

Dy(n). LetR be the slope of the linear regression of Dy(n) onto
the 2015–2100 trend in global-mean surface temperature

DTAS(n) across ensemblemembers. Then, the TAS-congruent

trend in y for ensemble member n is R 3 DTAS(n), and the

residual trend in y, after TAS removal, is

Dy
residual

(n)5Dy(n)2R3DTAS(n) . (1)

3. Identification of key drivers of twenty-first-century
U.S. wintertime precipitation trends

a. Motivation

We begin by motivating the importance of the storyline

approach. One may suppose that models with higher climate

sensitivities will typically also have larger precipitation trends,

simply because the amount of water vapor in the atmosphere

will increase with rising global temperatures. If global tem-

perature were in fact the only major factor determining the

magnitude of twenty-first-century precipitation trends, then we

could simply compare models by climate sensitivity, and the

storylines approach would be unnecessary. This is not the case,

as we illustrate below.

Figure 1 shows the magnitudes of the 2015–2100 DJF pre-

cipitation trends for the southwestern United States for each of

the 176 CMIP6 ensemble members, as a function of the global-

mean surface temperature trend. The ensemble members with

the largest and smallest precipitation trends for the Southwest

do not even come close to matching those with the largest and

smallest global-mean temperature trends. In fact, the largest

and smallest precipitation trends correspond to very similar

global-mean surface temperature trends (3.1 and 2.8K, re-

spectively). Even if we ignore these as outliers, the overall

relationship between the global-mean surface temperature

trend and the Southwest precipitation trend has a correlation

of essentially zero. Some other regions of the United States do

have somewhat larger correlations than in the Southwest, but

even there, the global-mean surface temperature trend typi-

cally accounts for less than 25% of the variance in regional-

mean precipitation trends across the full ensemble. Hence,

global-mean surface temperature is only one of several drivers

linked to differences in twenty-first-century U.S. precipitation

trends.1 Our first task is to identify some of these other drivers.

FIG. 1. (left) Scatterplot of DJF-season southwestern U.S. precipitation trends and global-mean surface air

temperature (TAS) trends; 176 ensemble members from 32 CMIP6 models are shown. The individual models with

the largest ensembles are shown in color. (right) Maps of precipitation trends for the ensemble members with the

(top) wettest and (bottom) driest trends for this region.

1 Note, however, that the precipitation trend may still be largely

caused by warming—perhaps via the influence of warming on other

drivers we discuss below—even though it does not scale with

warming. See section 5.
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b. Identification of zonal mean drivers

Based on the results of previous studies, we could search for

drivers by simply testing various indices of climate variability

(El Niño–Southern Oscillation, the Pacific–North America pat-

tern, etc.) known to significantly impact precipitation variance

over the United States. However, this approach could bias the

results, since some of the key drivers of twenty-first-century

precipitation trends might not be among these well-known

modes of variability. To avoid making any such a priori as-

sumptions, we instead plot, for each region, the correlation be-

tween the twenty-first-century precipitation trends and the

twenty-first-century trends in two key climate variables: zonal-

mean temperature in Fig. 2 and 500-hPa geopotential height in

Fig. 3. The correlations with zonal-mean zonal wind and sea

surface temperature (SST) are also shown in the online supple-

mentalmaterial. To construct these figures, we have removed the

components of the trends in all fields that are linearly congruent

with global-mean surface temperature [via Eq. (1)], so as to focus

on the variance in trends across CMIP6 models that is uncorre-

lated with global-mean surface temperature, which can be sub-

stantial in many cases (as shown in Fig. 1). We can then examine

these plots to identify whichever processes stand out, regardless

of whether they are alreadywell-knownmodes of variability.We

emphasize that the correlations in these figures are correlations

of the trends in the variables with the trends in regional-mean

precipitation, which can differ from correlations based on

monthly or interannual variability.

Figure 2 shows the correlation between the twenty-first-

century zonal-mean air temperature trend and each region’s

FIG. 2. Correlations of DJF-season zonal-mean air temperature trend at each latitude and pressure level with the regional-mean

precipitation trend for each of the 10 regions. The linear regression onto the TAS trend has been removed from all other trends. Stippling

indicates correlations that are significant at the p , 0.05 level using a two-tailed t test.

FIG. 3. As in Fig. 2, but for the 500-hPa height trends.
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twenty-first-century precipitation trend across all 176 CMIP6

ensemble members. Two features are readily apparent. First,

tropical upper-tropospheric warming is positively correlated

with precipitation in Alaska and the Northeast, and negatively

correlated with precipitation in the Southwest and Southern

Plains. That is, individual models or ensemble members with

stronger warming in the tropical upper troposphere tend to

also have more positive precipitation trends in Alaska and the

Northeast, and more negative precipitation trends in the

Southwest and Southern Plains.

Second, the correlation maps for several regions (Alaska,

Hawaii, Northern Plains, Northeast, and to a lesser extent the

Midwest) show a warming of the tropical upper troposphere

and a cooling of the polar lower stratosphere, and some other

regions show the reverse pattern (Southwest, Southern Plains,

Southeast). This changing temperature gradient in the upper

troposphere/lower stratosphere is consistent with a change in

the strength of the stratospheric polar vortex via thermal wind

balance. A similar analysis using zonal-mean zonal wind in-

stead of temperature confirms this more directly (see Fig. S2).

These two features have been studied before: in their anal-

ysis of European climate change, Zappa and Shepherd (2017)

identified three zonal-mean drivers of twenty-first-century re-

gional climate trends (see also Manzini et al. 2014; Garfinkel

et al. 2020): tropical upper-tropospheric temperature, the

strength of the stratospheric polar vortex, and Arctic lower-

tropospheric temperature. These drivers represent well-known

features of the climate change response that vary acrossmodels

and are known to contribute to substantial uncertainty in fu-

ture projections of the extratropical storm tracks (Butler et al.

2010; Harvey et al. 2014). The first two (tropical upper-

tropospheric temperature and the strength of the strato-

spheric polar vortex) correspond well to the two features we

identified in the correlation maps in Fig. 2. However, we note

that there is little evidence of an Arctic lower-tropospheric

warming signal in Fig. 2. For now, we include Arctic amplifi-

cation for the sake of completeness, but as we will show below,

its contribution is relatively small [as also found by Zappa and

Shepherd (2017)]. Thus, based on Fig. 2 and the results of

Zappa and Shepherd (2017), we have identified three candi-

date drivers that may explain some of the variability in twenty-

first-century U.S. winter precipitation trends across CMIP6

ensemble members.

c. Identification of zonally asymmetric drivers

One weakness of the analysis in Fig. 2 is that, by construc-

tion, it can only help us to discover zonal-mean phenomena

connected to precipitation trends. Hence, we show in Fig. 3 the

correlations between the twenty-first-century 500-hPa geo-

potential height trends and each region’s twenty-first-century

precipitation trend. In this case, two zonally asymmetric

patterns emerge.

First, a clear wave pattern is visible in the Hawaii, Midwest,

and Northeast panels, which strongly resembles the Pacific–

North America (PNA) pattern. It is noteworthy that—according

to this figure—this PNA-like pattern has a stronger correlation

with precipitation trends in the Northeast than on the west coast.

This strong downstream effect of the PNA is consistent with the

observational findings of Leathers et al. (1991), Notaro et al.

(2006), and Grise et al. (2013).

Second, a wave pattern out of phase with the PNA is clearly

visible in the correlation maps for Alaska and the Northwest,

and more vaguely apparent in some other regions. This second

pattern does not correspond to any well-known mode of 500-

hPa geopotential height variability, but it does resemble the

second principal component from an analysis of daily zonal

wind data byAthanasiadis et al. (2010).We refer to this pattern

as the east Pacific dipole (EP).

A notable absence from Fig. 3 is any clear correlation of the

regional precipitation trends with the North Atlantic Oscillation

(NAO). This absence is confirmed by an analysis of sea level

pressure—the more usual variable for defining the NAO (not

shown). This is again consistent with the results of Grise et al.

(2013), who found that Pacific variability has a greater influence

than the NAO on wintertime storm track variability throughout

most of North America, with the exception of the Canadian

maritime provinces. Other analyses have similarly shown that

the strongest impacts of the NAO on precipitation are found in

Europe and eastern Canada, rather than in the United States

(see Fig. 16 of Hurrell 1995, and Fig. 4c of Hurrell et al. 2003).

A similar analysis of correlations between twenty-first-

century SST trends and regional precipitation trends shows a

fairly clear El Niño–Southern Oscillation (ENSO) signal in

several regions, especially the Southwest, Southern Plains, and

Southeast (see Fig. S3). These correlations are to be expected,

as these are the same regions in which ENSO has a strong in-

fluence on the interannual variability of precipitation accord-

ing to observations (see, e.g., Fig. 7 of Trenberth and Caron

2000). The sign of the correlation between the ENSO trends

and the regional precipitation trends is also consistent with

observations, as El Niño events are associated with greater

precipitation in these regions.

d. Definitions of indices for the drivers

Hence, we have identified six key drivers (other than global-

mean temperature itself) whose twenty-first-century trends are

potentially linked to U.S. precipitation trends. Three of these

are zonally symmetric, and three are zonally asymmetric.

Following Zappa and Shepherd (2017) we define indices rep-

resenting the three zonally symmetric drivers as follows:

1) The tropical upper-tropospheric temperature (TUT) is

defined as the zonal-mean air temperature at the 250-hPa

level, averaged between 308S and 308N. This index captures

the amplified tropical upper-tropospheric warming in re-

sponse to increasing surface temperatures, as the tropical

lapse rate is approximately moist adiabatic.

2) The stratospheric polar vortex (SPV) is defined as the zonal-

mean zonal wind at the 20-hPa level, averaged between 708
and 808N. This index captures a weakening of the SPV during

thewinter season seen inmany (but not all) climatemodels in

response to increasing greenhouse gases, which subsequently

extends downward and impacts the tropospheric circulation

(Karpechko and Manzini 2012; Manzini et al. 2014).

3) Arctic amplification (AA) is defined as the zonal-mean air

temperature at the 850-hPa level, averaged between 608 and
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908N. This index captures the amplified Arctic surface

temperature warming that occurs in conjunction with in-

creasing global surface temperatures (e.g., Pithan and

Mauritsen 2014).

Similar indices were also used by Manzini et al. (2014) and

Garfinkel et al. (2020). Indices representing the three zonally

asymmetric drivers are defined as follows:

4) ENSO is defined using theNiño-3.4 index:monthlymean SST

averaged over the Niño-3.4 region (58S–58N, 1208–1708W.

5) The Pacific–North America pattern is defined using the

Wallace andGutzler (1981) station-based index. That is, we

use 500-hPa height departures from zonal mean (Z*) at the

following four locations: Z1*(208N, 1608W), Z2*(458N, 1658W),

Z3*(558N, 1158W), and Z4*(308N, 858W). The PNA index is

defined as

PNA5

�
1

4

�
(Z

1
*2Z

2
*1Z

3
*2Z

4
*). (2)

ThePNAcan also be defined using the first empirical orthogonal

function (EOF) of 500-hPa heights in the region 158–708N, 1808–
608W, similar to the definitions used by Chen et al. (2018) and

Yeh et al. (2018). The correlation between the trends in the EOF-

based and station-based PNA indices across ensemblemembers is

r5 0.91, so the two definitions are nearly interchangeable.We use

the station-based index for the sake of simplicity.

6) The east Pacific dipole (EP) is defined using a station-based

index similar to that for the PNA. The two locations are

chosen to be midway between the two northernmost and

two southernmost of the PNA locations, respectively:

Z5*(508N, 1408W), and Z6*(258N, 122:58W). The EP index is

defined as

EP5

�
1

2

�
(Z

5
*2Z

6
*). (3)

The placement of the stations ensures that the pattern of vari-

ability captured by the EPwill be distinct from the PNA.TheEP

pattern can also be captured by an EOF analysis using daily

zonal wind data (see Athanasiadis et al. 2010), but it is less ap-

parent in the monthly geopotential height data that we use here.

Therefore, we use the station-based definition listed above.

In addition to these six indices, we also consider the global-

mean TAS, giving a total of seven candidate indices whose

differing trends across models may help to explain the differing

regional precipitation trends.

The twenty-first-century trends in the other six indices listed

above may be closely related to the concurrent trends in the

global-mean surface temperature. For example, models with

higher climate sensitivity would be expected to have larger

tropical upper-tropospheric and Arctic surface temperature

warming. Hence, we use Eq. (1) to subtract the regression onto

TAS from the other trends. (Zappa and Shepherd 2017

accomplished a similar goal by normalizing their indices by

TAS trends.) We then use the residual trends in all six indices

in the analyses described below.

In the case that the other indices were strongly correlated

with each other, we might need to repeat this process by using

Eq. (1) to sequentially remove the influence of each index from

the next, in a manner similar to that used in the partial least

squares regression method (Wold 1966; Wallace et al. 2012;

Black et al. 2017). However, in practice the pairs of indices we

will end up using together are already poorly correlated (see

Tables S2 and S3).

To double-check that these indices really do capture the

patterns from Figs. 2 and 3, we also show the correlations of the

twenty-first-century trends in zonal-mean temperature and

500-hPa geopotential height with the trends in the indices

themselves (Figs. 4 and 5). From Fig. 4, it is clear that the

temperature patterns associated with TUT and SPV do in fact

closely resemble the patterns we found in the precipitation

correlations from Fig. 2. Figure 5 shows that, likewise, the 500-

hPa geopotential height patterns associated with PNA and EP

resemble the patterns we found in the precipitation correla-

tions from Fig. 3. Note that there are some similarities between

the patterns in Figs. 4 and 5 for some of the indices (e.g., PNA

and SPV), suggesting a possible correlation between these in-

dices which we will revisit below.

e. Characterizing the relative importance of the drivers

Now that we have identified six candidate indices, plus the

TAS trend itself, we can plot the correlations of these indices

with the twenty-first-century precipitation trends in each of the

10 NCA regions to summarize the most important drivers of

the variance in precipitation trends in each region. These

correlations are shown in the bar charts in Fig. 6. Note that we

have excluded panels for the SPV and AA indices from this

figure (they are shown for reference in Fig. S4).We exclude the

SPV index because it is largely redundant with the PNA index,

as nonnegligible correlations between SPV trends and PNA

trends exist across the CMIP6 model ensemble (r 5 20.53;

Table S2). In fact, after we regress the PNA trends out of the

SPV trends using Eq. (1), the residual SPV trends explain little

of the precipitation trends (not shown). We exclude the AA

index because its trends explain very little of the precipitation

trends (Fig. S4), except for modest correlations in the Southeast

and Caribbean, the former of which may be due to the anti-

correlation between AA and ENSO trends across models

(r520.43; see Table S2). Thus, given the weak roles of SPV and

AA, we narrow our list to five indices (TAS, TUT, ENSO, PNA,

and EP) for the remainder of this paper.

We also show 90% confidence intervals for the correlation

coefficients in Fig. 6. To construct each confidence interval, we

randomly select half of the ensemble members and recalculate

the correlation for that subsample. We repeat this procedure

10 000 times and use the 5th and 95th percentiles of the re-

sulting spread in subsampled correlations as the endpoints of

the confidence interval. We do not apply this procedure to the

TAS trends, because in this case the width of each confidence

interval is near zero. Note that the caveats from the introduc-

tion about interpreting confidence intervals probabilistically

apply here as well: while these confidence intervals can be

usefully compared with each other, they should not be in-

terpreted as literal probabilities.
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By construction, the results in Fig. 6 summarize those al-

ready shown in Figs. 2 and 3, but in a more concise format. For

example, according to the bar charts in Fig. 6, the PNA index is

most closely linked to precipitation trends in Hawaii, the

Midwest, and the Northeast. This is consistent with our dis-

cussion of 500-hPa heights fromFig. 3, which showed that these

were the same three regions in which the PNA-like pattern was

most clearly visible.

From Fig. 6 and Fig. S4, it is immediately apparent that the

twenty-first-century trends in the global-mean temperature

(green) and the zonally asymmetric indices (ENSO, PNA, EP;

red) are generally better correlated with twenty-first-century

FIG. 4. Correlations of DJF-season zonal-mean air temperature trends with the various index trends, for comparison with Fig. 2.

The linear regression onto the TAS trends has been removed from all other trends. Stippling indicates correlations that are significant at

the p , 0.05 level using a two-tailed t test.

FIG. 5. Correlations ofDJF-season 500-hPa height trends with the various index trends, for comparisonwith Fig. 3. The linear regression

onto the TAS trend has been removed from all other trends. Stippling indicates correlations that are significant at the p, 0.05 level using a

two-tailed t test.
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regional precipitation trends over the United States than are

trends in the zonal-mean indices (TUT, SPV, AA; blue). This

is in contrast to—but not in disagreement with—the findings

of Zappa and Shepherd (2017) that these zonal-mean indices

were quite useful for understanding European precipitation.

This contrast illustrates the point made by Garfinkel et al.

(2020) that zonal-mean indices are less useful in under-

standing local precipitation trends over the United States

than in many other regions. The results in Fig. 6 emphasize

that the storylines approach requires the identification of

physical drivers unique to the region of interest. Nonetheless,

at least one of the zonal-mean indices of Zappa and Shepherd

(2017) does have some explanatory value for the twenty-first-

century U.S. precipitation trends. Specifically, trends in the

TUT index are significantly correlated with precipitation

trends in the northeastern United States (r 5 0.36; see

also Fig. 2).

After excluding SPV and AA, the trends in the remaining

indices are generally poorly correlated with each other

(jrj# 0.20), so we will treat them as independent predictors

in the storyline analysis in the next section. One exception is

the relationship between PNA and ENSO, which—perhaps

unsurprisingly—have trends correlated at r 5 0.40. (See

Tables S2 and S3 for additional details on index correla-

tions.) This could be taken as a reason to omit one of the

two, but if we remove the influence of either ENSO or the

PNA on the other using Eq. (1), the residual remains no-

ticeably correlated with precipitation trends (not shown).

Thus, while we will need to treat this particular pair of in-

dices carefully, we will keep both. Also note that while TUT

and ENSO are strongly correlated in terms of monthly

variability—as should be expected due to the dynamics of

ENSO (Table S3)—their trends are not strongly correlated

across the full ensemble (Table S2).

Before proceeding to the construction of storylines, several

caveats are worth mentioning. If some component of the pre-

cipitation trend were driven by ENSO, for example, but was

the same across all ensemblemembers, this analysis wouldmiss

it. What we are accounting for here is not the degree to which

ENSO is responsible for the mean trend, but the degree to

which ENSO explains differences across models and ensemble

members.

It is also worth noting that this is a model analysis, and we

have argued that differences in modeled precipitation trends

are due in part to differences inmodeled trends in drivers such

as the PNA. One may question, however, whether the model’s

representation of these drivers is biased with respect to ob-

servations. To assess how well these drivers are represented in

models, we examine detrended and deseasonalized month-to-

month variability in the models, which can be directly com-

pared with observations. Figures S5–S8 show the correlations

of month-to-month variability in 500-hPa height and zonal-

mean temperature fields with month-to-month variability in

the driver indices in both CMIP6 models and in ERA5 re-

analysis data. In other words, we repeat the analysis shown in

Figs. 4 and 5, but for month-to-month variability in both ob-

servations and models. Overall, the resulting correlation pat-

terns are very similar in observations and models, suggesting

that the models possess a reasonable representation of these

drivers.

FIG. 6. Correlations between index trends and regional-mean precipitation trends, across all 176 CMIP6 ensemble members. The linear

regression onto the TAS trend has been removed from all other trends. Error bars are based on a bootstrapping method described in the

text (not applicable to TAS). DJF season only.
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4. Constructing storylines of twenty-first-century winter-
time precipitation change

Having identified five key drivers of twenty-first-century

precipitation trends over the United States, we can now con-

struct storylines. Following Zappa and Shepherd (2017), we

estimate the combined influence of two or more of the above

drivers (as listed in section 3) on twenty-first-century U.S.

precipitation trends as follows. If, for example, we consider the

ENSO and EP indices, the ‘‘high ENSO, high EP’’ storyline is

based on the combination of the 80th-percentile ENSO trend

(i.e., the ENSO trend in the 80th-percentile of the full 176-

member ensemble) and the 80th-percentile EP trend. The

synthetic storyline precipitation trend DPstoryline consists of the

ensemble-mean precipitation trend DPmean plus the additional

precipitation trend due to the high ENSO trend and a second

additional precipitation trend due to the high EP trend. We

calculate this at each location on the map as follows:

DP
storyline

5DP
mean

1 a
ENSO

(DENSO
80
2DENSO

mean
)

1 a
EP
(DEP

80
2DEP

mean
) . (4)

Here aENSO is the slope of the linear regression of the precip-

itation trend at this point onto the ENSO trend, DENSO80 is

the 80th-percentile ENSO trend, and DENSOmean is the mean

ENSO trend of the full 176-member ensemble. The quantities

in the last term for EP are defined similarly. A ‘‘high ENSO,

low EP’’ scenario would be defined the same way, except that

the EP trend would then be in the 20th percentile. Other

combinations are defined similarly. We subtract the linear re-

gression onto TAS from all other trends before performing this

analysis [as shown above in Eq. (1)]. We have assumed (as did

Zappa and Shepherd in their analysis) that the various drivers

we are studying combine linearly. We also assume that the

various indices are nearly uncorrelated with one another, an

assumption which we verified above in section 3, except for the

stronger correlation between the PNA and ENSO.

As a proof of concept, we show example storylines in this

section for winter precipitation trends in the Southwest and

Midwest, but this method can be readily applied to other re-

gions, other seasons, other emissions scenarios, or variables

other than monthly mean precipitation.

Figure 7 shows four storylines of twenty-first-century pre-

cipitation trends for the Southwest. Here, for simplicity, we use

only the two indices that explain the most variance in this re-

gion: ENSO and EP (see Fig. 6). All four storylines show

wetting trends at high latitudes and drying trends in the sub-

tropics, consistent with the multimodel-mean trend from

CMIP6 models (Fig. S9; see also Fig. 2 of Cook et al. 2020).

However, by construction, there are noteworthy differences in

precipitation trends in the southwestern United States among

the four panels. The largest differences are between the left

(higher-than-average EP trend) and right (lower-than-average

EP trend) sets of panels, showing the dominant influence of the

EP trends on this region. However, the top (higher-than-average

ENSO trend) and bottom (lower-than-average ENSO trend)

sets of panels do also differ noticeably, demonstrating the smaller

but substantial impact of ENSO trends. We can see from the bar

charts in Fig. 6 that ENSO and EP have opposite-sign correla-

tions with Southwest precipitation trends, so the strongest im-

pacts should occur when these indices have oppositely signed

trends so that their associated precipitation anomalies can rein-

force each other. This is indeed the case, and the contrast be-

tween the strongwetting trend in the top right panel (highENSO

trend, low EP trend) and the slight drying trend in the bottom-

left panel (low ENSO trend, high EP trend) of Fig. 7 is striking.

The differences among the storylines in Fig. 7 are more

clearly seen when the ensemble-mean trend is removed

(Fig. 8). From this figure, we can see that high EP trends are

always associated with a drier-than-average trend on the west

coast, but this dry region shifts to the north or south depending

on whether we consider the high ENSOor lowENSO scenario,

respectively. This is consistent with El Niño events causing

FIG. 7. Storylines for DJF-season precipitation. The storylines are constructed from those indices that are most

important in the southwestern United States (outlined), but the resulting precipitation trends are shown across a

larger domain.
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wetter-than-average conditions in the Southwest and drier-

than-average conditions in the Northwest (Dai and Wigley

2000). Similarly, the low EP scenario is always associated

with a wetter-than-average precipitation trend for the west

coast, but the wettest region shifts north or south depending on

the ENSO scenario. Note that these same storylines could be

used to study Northwest precipitation trends, since the same

two indices are important there.

Figures 9 and 10 show a second set of storylines, this time

optimized for the Midwest, where the key drivers are TAS

and PNA (see Fig. 6). In the Midwest, TAS is positively

correlated with the precipitation trend, and PNA is negatively

correlated with the precipitation trend, so these two drivers

again have competing influences. Accordingly, the top-right

panel (high TAS trend, low PNA trend) is the wettest of the

four storylines, and the bottom-left panel (low TAS trend,

high PNA trend) is the driest. Note, however, that none of

these storylines involve actual drying in the Midwest, in

contrast to the situation for the Southwest (Figs. 7 and 8).

Another contrast between the Southwest and Midwest is that

in the Southwest EP is clearly the more important of the two

drivers, whereas in the Midwest the magnitudes of the TAS

and PNA impacts are similar. This can be seen more clearly in

Fig. 10, where the impacts of the TAS and PNA trends on

Midwest precipitation almost exactly cancel in the top-left

and bottom-right panels, giving a precipitation trend nearly

the same as the multimodel ensemble mean (seen as zero in

Fig. 10, since the mean has been subtracted). While the

storylines in Figs. 9 and 10 were constructed with the Midwest

in mind, that they are also relevant for Northeast precipita-

tion, except that in the Northeast the TUT trend (not shown

in Figs. 9 and 10) is also important.

FIG. 8. As in Fig. 7, but with the ensemble-mean precipitation trend subtracted.

FIG. 9. Storylines for DJF-season precipitation. The storylines are constructed from those indices that are most

important in themidwestern region of theUnited States (outlined), but the resulting precipitation trends are shown

across a larger domain.
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One takeaway message from this analysis is the striking dif-

ference between the top-right and bottom-left panels of either

Fig. 7 or Fig. 9 and the associated wide spread in plausible pre-

cipitation outcomes for these regions.A second is the observation

that much of this spread is due to the EP (for the Southwest) and

the PNA (for the Midwest). The EP and PNA are both standing

wave patterns, and such patterns could be modified by climate

change, or could simply change randomly with the internal vari-

ability of the atmosphere. It therefore becomes important to

know whether the EP and PNA are forced by warming. If they

are not, then most of the uncertainty in Southwest precipitation

trends, and much of the uncertainty in Midwest precipitation

trends, as represented in Figs. 7–10, cannot be eliminated. In the

next section, we therefore turn our attention to the partitioning of

variance into forced and unforced components.

5. Partitioning variance of trends into forced and
unforced components

For a single-model ensemble, one can easily decompose

trends into forced and unforced components. In this case, the

forced trend is the ensemble-mean trend, and the trend due to

internal variability for each ensemble member is the deviation

from this mean (see, e.g., Deser et al. 2014).

In a multimodel large ensemble, one could similarly divide

the trends of some variable into two categories: 1) forced

trends, defined by the various single-model ensemble means,

and 2) trends due to internal variability, defined by the devi-

ations of trends within single-model ensembles from their re-

spective means. One might naively assume that the forced

trends for each model would scale closely with the TAS trend

(essentially climate sensitivity) in each model, and that trends

due to internal variability would be independent of it.

However, this partitioning misses an important fact: dy-

namical processes can be forced by increasing greenhouse

gases, but still not scale with TAS trends, as noted by Grise and

Polvani (2016). That is, we cannot equate forced trends with

TAS-congruent trends.Hence, themore appropriate partitioning

of the variance in a multimodel ensemble will in fact need three

categories: 1) forced trends which scale with the global-mean

surface temperature trend, 2) residual forced trends which do not

scale in this way, and 3) trends due to internal variability. We

define these three categories as follows.

First, we identify the total forced trend (whether it scales

with TAS or not) for each model. For a quantity X (e.g., pre-

cipitation in the Southwest), the total forced trend for a single

model can be estimated by the single-model ensemble mean

trend. To set the notation, let DX(m, n) be the trend of the

quantity X for ensemble member n of model m. For our

dataset, there are 34 models, and each model has anywhere

from 1 to 50 ensemble members, som ranges from 1 to 34, and

for each particular value of m, the index n has a range that

depends on the size of that single-model ensemble. Let

[DX(m,:)] be the mean of DX across all ensemble members

from modelm. This is the total forced trend in X for modelm.

Next, we separate the total forced trend [DX(m,:)] into

components that do or do not scale with TAS. Let b be the

slope of the linear regression of [DX(m,:)] onto [DTAS(m,:)]

and let a be the y intercept of the same regression. (We cal-

culate this as a weighted regression, in which each model’s

mean is repeated according to the number of ensemble mem-

bers. This is necessary for the partitioning of variance, as ex-

plained below.) The regression slope b can be thought of as the

sensitivity of the forced X trend to the TAS trend.

We may now define the forced trend that scales with the

TAS trend as

DX
1
(m,n)5 a1 b3 [DTAS(m,: )]. (5)

The residual forced trend is then simply the full forced trend

minus the quantity above:

DX
2
(m,n)5 [DX(m,: )]2DX

1
(m,n). (6)

Finally, the trend due to internal variability, for each ensemble

member of each model, is the original trend DX(m, n) minus

both of the forced trends defined above:

FIG. 10. As in Fig. 9, but with the ensemble-mean precipitation trend subtracted.
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DX
3
(m,n)5DX(m, n)2DX

1
(m,n)2DX

2
(m,n). (7)

These definitions are chosen so that, for each model m and

each ensemble member n, the three trends will sum to give the

original full trend DX(m, n). That is, DX1(m, n)1DX2(m, n)1
DX3(m, n) 5 DX(m, n) for each m and each n. We have arbi-

trarily included the y intercept (a) as part of X1, but this is

immaterial since we will only use these three quantities via

their variances. Because single-model ensemble means are

required for this partitioning, and because models with very

few ensemble members have poorly constrained ensemble

means, we restrict the analysis—for this section only—to those

CMIP6 models with at least five ensemble members each. This

leaves a total of 142 ensemble members from 13 models. The

results in this section are qualitatively similar for different

cutoff values (other than 5) for the minimum number of

available ensemble members per model.

Having partitioned the trends, we can now also partition the

variances. The variance in DX explained by the forcing that

scales with the TAS trend is simply the variance of DX1, the

residual forced variance is the variance in DX2, and the vari-

ance due to internal variability is the variance of DX3. The

weighting used here, in which each single-model ensemble

mean is repeated in accordance with the number of ensemble

members, is necessary for this partitioning to work. If we

simply used each single-model ensemble mean once, then the

variances due to TAS forcing and residual forcing would each

be computed as a variance of 13 individual quantities, whereas

the variance due to internal variability would be computed as a

variance of 142 individual quantities. In this case, the variances

would not add to 100% (not shown).

Figure 11a shows the results of this partitioning for trends in

four drivers of twenty-first-century U.S. precipitation trends

identified in the previous sections: TUT, ENSO, PNA, and EP.

The trends in the fifth driver (TAS) are, by definition, entirely

correlated with global-mean surface temperature warming.

Note that, for this part of the analysis, the first component

(variance explained by TAS forcing) is zero since we always

use index trends with the regression to the TAS trend removed

(as explained in section 3d). If we did not remove the regres-

sion to the TAS trend, most of the variance in the twenty-first-

century TUT trends would be associated with TAS warming

(not shown), as would be expected since tropical upper-

tropospheric temperature is linked by convection to tropical

surface temperature, which is in turn linked to the global-mean

surface temperature.

Figure 11a shows that, after removing the TAS trend from

each index, the variance in TUT trends across models is mostly

due to residual forcing, with only a small contribution from

internal variability. In contrast, the variance of the twenty-first-

century ENSO trends is roughly evenly divided between re-

sidual forcing and internal variability, and the variance in the

PNA andEP trends is primarily due to internal variability. This

last point is significant for the Southwest region, as it shows that

the most important process we have identified in that region

(Figs. 6–8) is mostly unpredictable.

Figure 11b show the results of the same decomposition, but

this time applied to the regional precipitation trends. In this

case, we have not removed TAS, so there are still three cate-

gories of variance. Results differ between regions, but overall

these charts show that each of the three categories of variance

is important in some regions, with internal variability being the

only category that is reasonably large in all 10 regions. We thus

conclude that internal variability is important for both the

precipitation trends and the trends in most of our identified

driver indices (with the exception of TUT).

For the Southwest in particular, Fig. 11b shows that essen-

tially none of the variance in the twenty-first-century precipi-

tation trends can be attributed to forcing that directly scales

with TAS (consistent with Fig. 1). Instead, approximately half

the variance is due to forcing that does not scale with TAS, and

the remainder is due to internal variability. For the Midwest,

forcing that scales with TAS is more important, but internal

variability is still the largest contributor to the spread in pre-

cipitation trends. Thus, projections of precipitation in both of

these two regions will always involve a considerable range of

FIG. 11. Partitioning of the variance in (a) index trends and (b) precipitation trends across the ensemble into the categories described in

section 5.
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possible outcomes, regardless of future model improvements.

This underscores the need to consider either the full spread of

modeled trends or the spread of synthetic trends calculated

from a method such as the storylines method (as shown in

section 4). The additional benefit of the latter is that it identifies

some of the drivers responsible for the model differences.

6. Conclusions

Projections of future U.S. winter precipitation trends differ

dramatically among CMIP6 models, and even among ensemble

members for the samemodel. Hence, the use of the multimodel-

mean precipitation trend obscures large uncertainties (e.g.,

through cancellation of opposing trends) and can be amisleading

guide for policy makers. Instead, future precipitation trends

should be represented in terms of a plurality of possible out-

comes. This can be done simply by showing the full range of

trends across models. However, the storylines method demon-

strated here is another means of quantifying those possibilities,

and it has the added benefit of identifying some of the key

physical drivers responsible for the differences between possible

future outcomes.

We can draw at least two general conclusions from our ap-

plication of the storylines approach to twenty-first-centuryU.S.

wintertime precipitation trends in CMIP6 models. First, the

spread in precipitation trends across models is not exclusively,

or even primarily, due to differences in climate sensitivity.

Instead, the spread in the precipitation trends is linked to

several different dynamic and thermodynamic drivers, which

include the global-mean surface temperature trend, but also

tropical upper troposphere temperature and teleconnection

patterns such as ENSO, PNA, and the east Pacific (EP) dipole.

Even when these other physical processes are forced by

warming, they have trends that differ across the multimodel

ensemble in ways that do not always scale with global-mean

temperature.

Second, a considerable amount of internal variability exists,

both in the precipitation trends and in the trends of the dy-

namic or thermodynamic drivers to which they are linked.

Unless the models have dramatically, and systematically,

overestimated the magnitude of internal variability (which

seems unlikely; see Knutson et al. 2013), this means that pro-

jected precipitation trends will always have a considerable

spread, emphasizing the need to identify a range of plausible

outcomes for policy makers.

In closing, we caution against two potential misinterpreta-

tions of this method. First, the goal of the storyline method is

not to determine which model or ensemble member is more

accurate, or to narrow the range of possibilities. Rather, the

goal is to quantify the range of possibilities, and to understand

the physical processes responsible for the differences. Second,

the small values of TAS-forced precipitation trends in some

regions, as in the Southwest, should not be construed to suggest

that climate change is unimportant in driving precipitation in

those regions. Rather, it suggests that the trend due to climate

change does not scale with climate sensitivity across models.

This study has served primarily to identify the key drivers of

twenty-first-century U.S. wintertime precipitation trends, and

to demonstrate the methodology for constructing storylines

from them. Follow-up studies can apply this method to focus

on specific NCA regions, seasons other than winter, and vari-

ables other than precipitation to demonstrate the range of

plausible outcomes for each of those contexts.
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